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Abstract: In this paper, it is presented an analytical model based on the “forced method” 
and Mohr-Maxwell theorem, for strength calculus of three dimensional hiperstatic 
structures under static loadings. The calculus results are parametric for generalizing the 
solution. In the end, the theoretical aspects are used for a particular case. 
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1. INTRODUCTION 
 
Many metallic structures, that are designed to sustain different loadings, used in practical engineering are 
hiperstatic (the unknown parameters given by the reaction forces and closed contours are higher than the 
equilibrum equations written for a three dimensional body). 
 
In this paper it is made an analytical model for strength calculus of a hiperstatic three dimensional metallic 
structure, that represents a truck chasis, under static loadings. Other different analytical methods were also 
presented in [1], [2] and [3] for distinct indeterminate metallic structures This model is based on the “force 
method” and Mohr-Maxwell theorem, presented in [4], [5] and [6], and the calculus relations are parametric for 
generalizing the solution. There have been used the next simplifying assumptions: the loadings are considered to 
be in the bodywork mounting points, the structure material is S235JR, there are considered only the bending and 
torque effects, the beams have a transversal box with rectangular hollow section. The geometry of the metallic 
structure and its loading scheme is presented in Figures 1 and 2. 
 
The first step of the strength calculus is to define the stiffness constant ratios using relation (1), where E and G 
are the material elastic modules, the first index of the constants corresponds to the inertia moment type (axial or 
polar) and the second index corresponds to the beam’s number. 
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Fig.1.The geometry and loading scheme of the metallic structure: 1- longitudinal beams, 2- transversal beams. 
 

 
Fig.2. The horizontal plane view of the geometry and loadings. 

 
 
2. THE BASE AND SECONDARY SYSTEMS SOLVE. THE STRESSES CALCULUS. 
 
From Figures 1 and 2 we can say that the structure is five times statically undetermined. The calculus scheme of 
the base system is presented in Figure 3. 
 

 
 

Fig.3. The basic system with real loadings described by all the three planes: horizontal, vertical and lateral. 

1

2
9

4
8

5

6
7

V1 

V2V2 

V3V3

F2

F1F1 

F3F3

F2
3

V1

2
1 

x 

x 

x

x

x 

x 

g ea f b c d

h
 

2
h
 

V1 

V1 

V2 

V2 

V3 

V3 

F1

F1 

F2

F2

F3 

F3 

1 

2

9

3

4

8

5

6 

7 

1

2
9 

4 

5 

6

V1 

X1 

V3 V3 

F2

F1 

X4 

F3F3

M0 

3

V1 

X1 

a 

b 

c 

e 

d 

7

8

X4 

X2X2 

X3 

X3 

X5 

X5 

x 

x x 

x 

x 

F1

x 
x 

x 

F2 

L V 

H 



 
Journal of Engineering Studies and Research – Volume 17 (2011) No. 3                                       50 
 
 

The base system is obtained by sectioning the two closed contours (we have the unknown parameters X2…X5) 
and by removing the reaction force V2 (we have the unknown parameter X1). We will next write the bending and 
torque moment’s equations, defined by the x parameter which has different values depending on the considered 
gap:  
 

gap 1-2, xє[0,a] ; gap 2-9, xє[0,h] ; gap 6-5, xє[0,e] ; gap 7-6, xє[0,h] ;  
 

gap 5-4, xє[0,d] ; gap 4-3, xє[0,c]; gap 8-4, xє[0,h] ; gap 3-2, xє[c,c+b]. 
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The moments equal to zero on the considered gaps, haven’t been written in relation 2. In order to write the 
secondary systems, we ignore the real loadings and we insert a unitary force or moment in the points where the 
unknown parameters X1…X5 exist. Five secondary systems are created. 

 
Fig.4. The secondary systems : a. – the first secondary system; b – the second secondary system; c -  the third 

secondary system. 
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Fig.4. The secondary systems: d – the fourth secondary system; e- the fifth secondary system. 

 
We write the bending and torque moments equations on each gap for every secondary system from Figure 4. 
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The moments equal to zero on the considered gaps for all the secondary systems, haven’t been written in relation 
3. Using the moments relations (2) and (3) and Mohr-Maxwell method, we create the canonical system (4) and 
its factors aij are calculated with (5). Using the system (4) we obtain the unknown parameters X1..X5. 
 

             
⎪
⎩

⎪
⎨

⎧

=+++++

=+++++

0
...

0

50555454353252151

10515414313212111

aXaXaXaXaXa

aXaXaXaXaXa
                                         (4) 

1

2

9 

4

5 

6 
X4=1

3

a

b 

c

e

d

7

8
x

x

1

d.

1

2

9 

4

5 

6 
X5=1

3

a

b 

c

e

d

7

8
x

x

1

e. 



 
Journal of Engineering Studies and Research – Volume 17 (2011) No. 3                                       52 
 
 

              ∫ ∫ ∫∫∫
+

++++=
a dc

c

h

ttv

c

v

d

vv dxmkdxmdxmdxmdxma
0 0

2
2912

2
321

0

2
431

0

2
541

2
12111 ,             (5) 

 

                     ∫ ∫
+

+=
bc h

hhhh dxmkdxmka
0 0

2
2922

2
432122 , ∫∫ ⋅+⋅=

+ h

hh

bc

hhhh dxmmkdxmmka
0

294292
0

2434432124 , 

 

∫∫∫ ++=
+ h

vv

bc

tt

h

vv dxmkdxmkdxmka
0

2
2932

0

2
4331

0

2
843233 , ∫∫ ⋅+⋅=

h

vvv

h

ttt dxmmkdxmmka
0

2952932
0

435433135 , 

 

∫∫∫∫ +++=
+ h

hh

dc

hh

d

hh

e

hh dxmkdxmkdxmkdxmka
0

2
2942

0

2
4341

0

2
5441

0

2
654144 , 

 

∫∫∫∫∫ ++++=
+ h

vv

bc

tt

d

tt

e

tt

h

vv dxmkdxmkdxmkdxmkdxmka
0

2
2952

0

2
4351

0

2
5451

0

2
6551

0

2
765255 , 

 

∫∫∫∫∫ ⋅+⋅+⋅+⋅+⋅=
+ h

ttt

bc

c
vv

c

vv

d

vv

a

vv dxMmkdxMmdxMmdxMmdxMma
0

2902912320321
0

430431
0

540541
0

12012110

 
The factors that haven’t been presented in (5) are zero. Having calculated the initial indeterminate values 
X1…X5, we can directly determine the bending and torque moments using (6), marking with ij the gaps where 
the moments are being computed. 
 
                                 55443322110),,( XmXmXmXmXmMM ijijijijijijthvij +++++=                               (6) 
 
Taking into account only the moments, we can calculate the normal and shear stresses using relation (7), where ij 
is the gap number, W is the axial strength modulus and Wp is the polar strength modulus. 
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To demonstrate the calculus viability, this modelling will be used for a particular case defined in this way: 
 

F1= 1300 N, F2= 3800 N, F3= 200 N, a= 110 mm, b= 220 mm, c= 70 mm, d= 90 mm, e= 60 mm, f= 150 mm,  
h= 70 mm, E= 2.1· 105 MPa, G= 0.8· 105 MPa, b1= h1= 30 mm, g1= 2 mm, b2= h2= 15 mm, g2= 2mm. 

 
where bi, hi, gi are the geometrical characteristics of the beams section (base, height and wall thickness). 
 
We calculate first the stiffness constant ratios using relation (1). 
 

Iv1= 2.157· 104 mm4, Ih1= 1.13· 104 mm4, Ip1= 2.209· 104 mm4, Wv1= 1.438· 103 mm3, Wh1= 1.113· 103 mm3,  
Wp1= 2.016· 103 mm3, kh1= 1.938 , kt1= 2.563 , kv2= kh2 = 7.192 , kt2= 12.883. 

 
Then we write the moments equations on each gap and we create the canonical system (4) and its factors aij will 
be calculated with (5). 
 

6
11 1.896 10a = ⋅ , 7

22 5.87 10a = ⋅ , 7
24 9.222 10a = ⋅ , 3

33 1.75 10a = ⋅ , 3
35 1.47 10a = ⋅ ,  

8
44 1.525 10a = ⋅ , 9

10 5.891 10a = − ⋅  
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Using the system (4) we obtain the unknown parameters X1..X5 in (8). 
 

           NX 31061 = , 0... 51 === XX                                                               (8) 
 
Using the results from (8) and the relation (6) we can determine the bending and torque moments from each gap 
(the values are in N·mm). 
 

12 716.287vM x= ⋅ , xM v ⋅−= 20065 , 54 12000 1277.341vM x= − + ⋅ , 3
29 1024 ⋅=tM  

 

43 102960.698 2522.659vM x= − ⋅ , 32 114485.364 583.713vM x= − + ⋅ . 
 
With relation (7) we can determine the normal and shear stresses (the values are in MPa). 
 

12 0.498v xσ = ⋅ , 65 0.139v xσ = − ⋅ , 54 8.437 0.888v xσ = − + ⋅ ,                               (9) 
 

32 79.631 0.406v xσ = − + ⋅ , 29 35.503τ =  
 
After obtaining the stresses values on each gap, we compare the maximum normal and shear stress with the 
admissible ones in order to see if the structure resists under the chosen loadings.   
 
 
3. CONCLUSIONS 
 
The hiperstatic structure analyzed in this paper presents a certain simplifying grade, using a number of 
assumptions. The most important ones are:  

- the loadings are static and considered to be in the bodywork mounting points,  
- the metallic structure material is S235JR,  
- there are considered only the bending and torque effects,  
- in the calculus, there have been used the simplifying assumptions from the “strength of materials” (like 

Bernoulli or Saint-Vennant hypothesis, the material is perfectly elastic, the material is perfectly 
homogenous and isotropic, the stresses and strains are proportional, etc.),  

- the structure elements have been calculated under the “bar schematization ”, 
- the beams have a transversal box with rectangular hollow section. 

 
Even if there have been used those simplifying assumptions, there has been obtained a complex model. Its 
geometry and loading scheme is presented in Figures 1 and 2. The calculus scheme will no longer be valid if the 
number of the reaction forces is lower or higher than 6 because the degree of static indeterminacy will decrease 
or increase and another model will be obtained. The same conclusion can be obtained if the number of the closed 
contours increase or decrease. 
 
The calculus model defined in this paper has big dimensions and can be easily used if only it is inserted in a 
mathematical calculus software like Matlab, Maple, Mathcad, Mathematica and so on. The authors have tried to 
simplify the mathematical model in order to be easily understood by anyone who wants to make strength 
calculus of hiperstatic structures. The calculus relations were given parametrically in order to generalize the used 
method. The model has a high generality degree and can only be used for the case presented in chapter one. This 
strength analysis presented in this paper can serve, as a guide, for solving some similar situations. A secondary 
purpose followed by the authors is the demonstrative character, trying to define the approaching procedure for 
this king of study. 
 
In order to demonstrate the viability of the presented model, there has been defined a particular case in chapter 2. 
There have been determined all the parameters from the model and there have also been obtained the bending 
and torque moment, normal and shear stresses equations. In Figure 5, there will be presented the stresses 
graphics on the considered gaps. 
 
From Figures 5 and 6 we can extract the following conclusions: 
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- all the stresses variations are linear 
- the only gap subjected to torque is 2-9 
- the shear stress is constant  
- the maximum normal stress is obtained on the 4-3 gap 
- on 1-2 gap, the maximum stress is obtained for x= 110 mm and its value is 54.804 MPa 
- on 6-5 gap, the maximum stress is obtained for x= 60 mm and its value is -8.437 MPa 
- on 5-4 gap, the maximum stress is obtained for x= 90 mm and its value is 71.615 MPa  
- on 4-3 gap, the maximum stress is obtained for x= 0 mm and its value is 71.615 MPa 
- on 3-2 gap, the maximum stress is obtained for x= 70 mm and its value is -51.211 MPa 
- all the normal stresses occur in the vertical plane 
- on the 1-2, 5-4 and 3-2 gaps the stresses graphics are ascending 
- on the 6-5 and 4-3 gaps the stresses graphics are descending 

 
As a further research regarding this study, I consider that this analytical model must be validated by an 
experimental model (for example using strain gages measurements) and by finite element analysis using 
specialized softwares like Ansys or Abaqus. 
 

 
Fig.5. The normal stresses graphics: a- on 1-2 gap, b- on 6-5 gap , c- on 5-4 gap, d- on 4-3 gap.  
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Fig. 6. The normal and shear stresses graphics: a – the normal stress on 3-2 gap, b – the shear stress on 2-9 gap. 
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